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Calculation of the generation time distribution of yellow fever 54 
Although epidemiological parameters of yellow fever are still poorly characterised, we can try to 55 
use field and experimental data to reconstruct the generation time distribution of yellow fever. 56 

Human incubation period (HI) 57 

The incubation period is the time between infection and the time of symptom onset. For the human 58 

incubation period we used a truncated exponential distribution with a mean of 4 days and a 59 

maximum time of one week.1  60 

Human to mosquito transmission (HM) 61 

We assume that the duration of infectivity of human cases is exponentially distributed with a mean 62 

of 3 days for up to a maximum of 10 days.2 63 

Mosquito infectiousness (MI) 64 

The period of mosquito infectiousness depends on the lifespan of the mosquito and the extrinsic 65 

incubation period (the time between infection in the mosquito from blood feeding of an infectious 66 

human to it becoming infectious itself and able to transmit to a new host). The average lifespan of 67 

Aedes aegypti is 7 days with a maximum of 30 days.3 The extrinsic incubation period for yellow 68 

fever has been estimated at 6·9 days.2 69 

Generation time distribution 70 

We derived the empirical distribution of the generation time by simulating values for HI, HM and MI. 71 

A human case contributed to the transmission process on each day they were infectious (so the 72 

number of mosquitoes infected by a case was proportional to the duration of infectivity of the case). 73 

The same was true for mosquitoes. 74 

Figure S1 shows the empirical generation time distribution we obtained. The generation time is 75 

estimated to have a mean of 15·0 days and a standard deviation of 5·6 days. 76 
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 77 

Figure S1: Empirical distribution of the generation time for Yellow Fever. 78 

Estimation of the exponential growth rate, the doubling time and the reproduction 79 
number 80 

Exponential growth rate 81 
We fit a simple exponential growth rate model to the early stage of the epidemic: 82 

𝐼𝐼𝑤𝑤 = 𝐼𝐼0𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟𝑊𝑊.𝑤𝑤) 

where 𝐼𝐼𝑤𝑤 is the number of cases on week w. 83 

The time period for which exponential growth occurs is determined by plotting the log of the 84 
weekly number of cases (Figure S1) and selecting the time period when this variable grows linearly. 85 
A simple linear model is then fitted on this time period to estimate 𝑟𝑟𝑊𝑊: 86 

𝑙𝑙𝑙𝑙(𝐼𝐼𝑤𝑤) = 𝑙𝑙𝑙𝑙(𝐼𝐼0) + 𝑟𝑟𝑊𝑊.𝑤𝑤 

The daily exponential growth rate 𝑟𝑟 is a simple function of the weekly exponential growth rate 𝑟𝑟𝑊𝑊: 87 

𝑟𝑟 = 𝑟𝑟𝑊𝑊/7 

Between week 1 and week 5 in 2016, we estimate that the weekly exponential growth rate 𝑟𝑟𝑊𝑊 is 88 
0·80 (95% CI: 0·71, 0·90) and the daily exponential growth rate 𝑟𝑟 is 0·11 (95% CI: 0·10, 0·13). 89 

Doubling time 90 
The doubling time D can be derived from the exponential growth rate 𝑟𝑟 with the following formula: 91 

𝐷𝐷 = 𝑙𝑙𝑙𝑙(2)/𝑟𝑟 

Reproduction number 92 
Denote 𝑔𝑔(. ) the density of the generation time (i.e. time lag from the infection of a case to the 93 
infection of the persons they infect). The following formula can be used to derive the reproduction 94 
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number R from the exponential growth rate 𝑟𝑟 if the generation time distribution 𝑔𝑔(. ) is assumed to 95 
be known.4 96 

𝑅𝑅 =
1

∫ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑟𝑟. 𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡∞
0

 

 97 
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Human movement metrics:  99 

Two generalized movement models used in this analysis were the gravity model  𝑇𝑇𝑖𝑖,𝑗𝑗  = 𝑘𝑘
𝑁𝑁𝑖𝑖
𝛼𝛼𝑁𝑁𝑗𝑗

𝛽𝛽

𝑑𝑑𝑖𝑖,𝑗𝑗
𝛾𝛾 , and 100 

the radiation model 𝑇𝑇𝑖𝑖,𝑗𝑗  =  𝑇𝑇𝑖𝑖
𝑁𝑁𝑖𝑖𝑁𝑁𝑗𝑗

�𝑁𝑁𝑖𝑖+𝑠𝑠𝑖𝑖,𝑗𝑗��𝑁𝑁𝑖𝑖+𝑁𝑁𝑗𝑗+𝑠𝑠𝑖𝑖,𝑗𝑗�
, where total commuting is 𝑇𝑇𝑖𝑖,𝑗𝑗 from district i, to 101 

j; 𝑁𝑁𝑖𝑖𝛼𝛼  is the population in the origin and 𝑁𝑁𝑗𝑗
𝛽𝛽 in the destination district; 𝑑𝑑𝑖𝑖,𝑗𝑗

𝛾𝛾  the distance between 102 
them, and 𝑠𝑠𝑖𝑖,𝑗𝑗  the population in the radius between i and j. 103 

  104 
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Geographic spread model 106 

 107 

Figure S2: Population distribution in the study area (a) and relative human connectivity (b) 108 
between each district (Angola) and commune (DRC). The width of the arrows indicate the 109 
strengths of the connection.  110 
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 112 

Figure S3: Road network in Angola and southern Democratic Republic Congo 113 
(www.maps.google.com).  114 

http://www.maps.google.com/
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Table S1: List of variables used in geographic spread model. 116 

 Name Reference 
1 Great circle distance  rdist.earth function in the ‘fields’ 

package in R 
2 One away adjacency GADM shapefile 

(http://www.gadm.org) 
3 Two away adjacency GADM shapefile 

(http://www.gadm.org) 
4 Three away adjacency GADM shapefile 

(http://www.gadm.org) 
5 Gravity model  Movement package in R, based 

on Zipf et al. 19465 
6 Radiation model Movement package in R, Simini 

et al. 20126 
7 Uniform selection model Simini et al. 20137 
8 Binary variable pre/post expansion 

phase 
Before and after week 14 

9 Aedes aegypti suitability Kraemer et al. 20158 
10 Aedes aegypti suitability weighted by 

mobility 
Kraemer et al. 20158, Simini et 
al. 20126 

11 Travel time distance Uchida and Nelson 20089 
  117 
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Supplementary Results 118 

 119 

Figure S4: Results showing the relationship between population density and duration of 120 
transmission (a). Panel b) shows the results from the Cox model. 121 

  122 
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 124 

Figure S5: Relationship between distance (a), travel time (b) and time until a district was invaded. 125 

  126 



 11 

 127 

Figure S6: Comparison between observed proportion of districts invaded and their predicted 128 
probabilities using the univariate models; a) Aedes aegypti probability of occurrence; b) Great circle 129 
distance; c) Gravity metric; d) Neighborhood model; e) Radiation metric; f) Travel distance metric.  130 

  131 
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 132 

Figure S7: Model accuracy for the real-time predictions between weeks 9-12 of 2016 during the 133 
outbreak with a model using data only until week 8 of 2016. Blue line indicates perfect calibration.  134 
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 135 

Figure S8: Histogram of district mean values of Aedes aegypti suitability for the study region. 136 
Estimates are taken from Kraemer et al. 2015.8  137 
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Figure S9: Model comparison of full model vs. univariate models for the expansion phase of the 139 
outbreak. 140 

  141 



 15 

Table S2: Inclusion probability of variables in the model when using backward selection based on 142 
significance. 143 

Name Weeks variable was retained in 
the model (starting week 11 of 
outbreak) 

Total number of weeks 

Great circle distance  11, 18, 19, 21, 23, 25, 27 – 34  14 

One away adjacency 14 1 

Two away adjacency 15-34 20 

Three away adjacency 13, 14, 16, 18 4 

Gravity model 11-14, 16-18, 21-34 21 

Radiation model 14, 15, 19-23, 25-34 17 

Uniform selection model 11, 12, 21, 23-25, 27-34 14 

Binary variable pre/post 
expansion phase 

14-34 21 

Aedes aegypti suitability 12, 13, 16-19, 21-24, 26-34 19 

Aedes aegypti suitability 
weighted by mobility 

13, 14, 16-18, 21-34 19 

Travel time distance 12-17, 20 7 

  144 
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 145 

Figure S10: Predictive accuracy of the full model (green) and the full model assuming reporting 146 
delays (red) of four weeks in the early phase of the epidemic (until week 9 of 2016) and one week 147 
in subsequent weeks. 148 

  149 



 17 

Table S3: Parameter coefficients for full model and full model assuming reporting delays of four 150 
weeks in the early phase of the epidemic (until week 9 of 2016) and one week delay in subsequent 151 
weeks. 152 

Parametric coefficients Covariate Estimate Ch.sq 
Std. 
error 

p-
value 

Full model Intercept 
-

6.365271 
 

0.411084 <0.001 

 
Three away 

-
0.098956 

 
0.063441 <0.001 

 

Before/after 
intervention 

-
0.053673 

 
0.007646 <0.001 

 
Aedes (smooth) 

 
59.72 

 
<0.001 

 
Radiation model (smooth) 33.33 

 
<0.001 

 
Gravity model (smooth) 47.86 

 
<0.001 

Full model assuming reporting 
delays Covariate Estimate Ch.sq 

Std. 
error 

p-
value 

 
Intercept 

-
7.162161 

 
0.690742 <0.001 

 
Three away 

-
0.069311 

 
0.063506 <0.001 

 

Before/after 
intervention 0.051188 

 
0.007419 <0.001 

 
Aedes (smooth) 

 
66.73 

 
<0.001 

 
Radiation model (smooth) 29.25 

 
<0.001 

 
Gravity model (smooth) 40.48 

 
<0.001 
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 154 

Table S4: Parameter coefficients for the full model with assumed delays of the effect of vaccination 155 
three weeks prior to implementation until five weeks after. 156 

week of 
implementation coefficient p-value 

Std error Dev 
explained 

-5 -0.03254 >0.05 0.05617 24.4% 
-4 -0.03254   >0.05 0.01715 24.4% 
-3 -0.08947 <0.001 0.01160 33.6% 
-2 -0.08949 <0.001 0.01159 33.6% 
-1 -0.068937 <0.001 0.008667 32% 
0 -0.0537 <0.001 0.007195 30.8% 
1 -0.03528 <0.001 0.005253 28.4% 
2 -0.039253 <0.001 0.005377 30.1% 
3 -0.040447 <0.001 0.005435 30.4% 
4 -0.038561 <0.001 0.005214 30.3% 
5 -0.042271 <0.001 0.005414 31.5% 
6 -0.042866 <0.001 0.005569 31.7% 

 157 

  158 
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